ESCOLA BÁSICA MUNICIPAL ALBERTO BORDIN

PROFESSORES: GERSON (49) 999086015

VANESSA (49) 999663877

ALUNO (A):

7° ANO: ETAPA 8

ATIVIDADES PEDAGÓGICAS NÃO PRESENCIAIS DE MATEMÁTICA – 7° ANO

(Referente às aulas de 10/08/2020 até 28/08/2020)

Orientações: Olá queridos alunos! Após realizar as atividades enviá-las por fotos ou entregar na escola. Até breve!

Atividades:

1) Resolva as adições ou subtrações de números inteiros:

a)
$$(61) + (-18) =$$

b)
$$(-127) - (316) =$$

c)
$$(+17) + (+20) =$$

d)
$$(-43) + (-13) =$$

e)
$$(-78) - (-14) =$$

$$f) - (-23+38) =$$

$$g) + (-32+10) =$$

2) Calcule:Lembre-se de primeiro eliminar os parênteses verificando qual operação vai permanecer.

c)
$$5 - (-5) + 3 - (-3) + 0 - 6 =$$

d)
$$-82 + 75 + (-162) + (-13) - 43 - 1 = e$$
 e) $-201 - 79 - 62 - (-105) - 12 - (-103) = e$

g)
$$74 - 24 + (-107) - (+312) - (-312) =$$

Multiplicação e Divisão com Números Positivos e Negativos

Usando ainda a mesma regra de sinais, só que agora para resolver as operações elas serão um pouco alteradas sobre como usá-la, por que precisamos fazer ao jogo do sinal de número para número.

Exemplos: Lembrando que quando o número não tem sinal ele é positivo.

b)
$$(+9) \cdot (5) = +45$$

c)
$$(-4)$$
 . $(-12) = +48$

e)
$$(-93)$$
: (-3) = +31

f)
$$(-48)$$
 : $(+8)$ = -6

g)
$$(18)$$
: $(3) = 6$

Atividades:

1) Calcule às multiplicação:

a)
$$(+8)$$
 . $(-9)=$

b)
$$(-6)$$
 . (-5) =

c)
$$(+7)$$
 . $(+4)=$

d)
$$(+9)$$
 . $(+7)=$

$$e) (-8) \cdot (+6) =$$

$$f) (+5) \cdot (-11) =$$

g)
$$0.(+13)=$$

h)
$$(-6)$$
 . $(-18)=$

$$i) (+3) . (-21) =$$

$$i) (-8) . 0 =$$

$$k) (-11) \cdot (-21) =$$

$$m) (+17) \cdot (+17) =$$

$$n) (-5) \cdot (-32) =$$

2) Efetue as divisões:

a)
$$(-9)$$
: $(+3)$ =

c)
$$(+21)$$
 : $(+7)$ =

e)
$$0: (+20)=$$

f)
$$(-31)$$
: $(+31)$ =

$$g) (+45) : (+3) =$$

$$i) (-65) : (-5) =$$

$$j) (-90) : (+6)=$$

$$m) (+96) : (-24) =$$

o)
$$(+63)$$
 : $(+21)$ =

Potenciação e suas Propriedades

Podemos dizer que potenciação representa uma multiplicação de fatores iguais, se temos a seguinte multiplicação: 2 x 2 x 2 x 2 x 2 x 2 x 2, podemos representá-la usando a potência 26, onde 2 é a base e 6 o expoente (Leia: dois elevado a sexta potência).

O expoente possui um papel fundamental na potenciação, pois ele é quem define quantas vezes a base será multiplicada por ela mesma. Observe e atentamente note os expoentes (chefes) e as bases (empregados) quanto ao sinal, lembrando que para resolvermos uma potenciação multiplicamos as bases entre si quantas vezes quiser o expoente.

Base negativa e expoente ímpar, resultado negativo.

$$(-3)^3 = (-3) \times (-3) \times (-3) = -27$$
 ______ +9. $(-3)=-27$

$$(-4)^5 = (-4) \times (-4) \times (-4) \times (-4) \times (-4) = -1024$$

$$(-2)^7 = (-2) \times (-2) \times (-2) \times (-2) \times (-2) \times (-2) \times (-2) = -128$$

Base negativa e expoente par, resultado positivo.

$$(-2)^4 = (-2) \times (-2) \times (-2) \times (-2) = +16$$

$$(-6)^2 = (-6) \times (-6) = +36$$

$$(-7)^2 = (-7) \times (-7) = +49$$

Lembrar também que todo número elevado a zero, terá resultado 1, seja ele positivo (+) ou negativo (-) dentro de parênteses, caso não tenha parênteses o resultado terá o sinal que a base apresentar. Assim também, como quando ele tiver expoente 1, o resultado será o próprio valor da base.

OBS: É de suma importância ficar atento quando há parênteses ou não na base, pois o sinal de negativo fora dos parênteses faz que ele interfira no resultado.

Exemplos:

$$(-2)^3 = (-2) \cdot (-2) \cdot (-2) = (-8)$$

 $-2^3 = 2 \cdot 2 \cdot 2 = 8$ e o sinal vem direto para o resultado, então = -8

$$(-2)^4 = (-2) \cdot (-2) \cdot (-2) \cdot (-2) = (+16)$$

 $-2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$ e o sinal vem direto para o resultado, então = -16

Atividades:

1) Calcule as potências:

a)
$$(+7)^2 =$$

b)
$$(+4)^2 =$$

c)
$$(+3)^2 =$$

d)
$$(+5)^2 =$$

e)
$$(+2)^3 =$$

f)
$$(+3)^3 =$$

g)
$$(+2)^4 =$$

h)
$$(+2)^5 =$$

i)
$$(-5)^2 =$$

$$(-3)^2 =$$

$$k) - 2^3 =$$

1)
$$(-5)^3 =$$

m)
$$(-1)^3 =$$

n)
$$(-2)^4 =$$

o)
$$(-3)^3 =$$

p)
$$-3^4 =$$

2) Calcule as potências:

a)
$$0^7 =$$

b)
$$(-2)^8 =$$

c)
$$(-3)^5 =$$

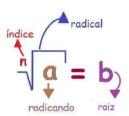
d)
$$(-11)^3 =$$

e)
$$(-21)^2 =$$

f)
$$(+11)^3 =$$

g)
$$(-20)^3 =$$

h)
$$(+50)^2 =$$


i)
$$(+1)^{397} =$$

$$(+1)^{658} =$$

k)
$$(-1)^{999}$$
 =

1)
$$(-1)^{1000}$$
 =

Radiciação

A radiciação é a operação inversa ou contrária a potenciação, sendo assim o que uma faz a outra desfaz, para raiz quadrada $\sqrt[2]{}$, temos um número que elevado ao quadrado deu o valor que vai dentro da raiz. Assim também podemos extrair uma raiz enésima de qualquer valor, porém aqui temos o detalhe do sinal que pode ser positivo sendo possível extrair uma raiz seja qual for o seu índice, ou sinal pode ser negativo e

nesse caso ele não permite a extração quando o índice for um número par terminado em 2, 4, 6, 8 ou 10...

Nomenclatura: Lembrando que:

n = pode ser qualquer número positivo racional de 2 para cima

a = pode ser qualquer número real

b = é o resultado da extração de algum número

Exemplos:

 $\sqrt[2]{+4} = +2$, porém $\sqrt[2]{-4} = \text{não \'e} -2$, isso porque tanto $(+2)^2 = (+2) \cdot (+2) = +4$, quanto $(-2)^2 = (-2) \cdot (-2) = +4$, ou seja, nenhum deles chega a -4, sendo assim essa raiz não existe (∄).

 $\sqrt[8]{+256} = +2$, porém $\sqrt[8]{-256} = \text{não \'e} -2$, isso porque tanto $(+2)^8 = (+2) \cdot (+2$ assim essa raiz não existe (∄).

Porém:

$$-\sqrt[10]{+1024} = -(+2) = -2$$
 $\sqrt[3]{+64} = +4$
 $\sqrt[3]{-64} = -4$
 $\sqrt[5]{-32} = -2$

$$\sqrt[3]{+64} = +4$$

$$\sqrt[3]{-64} = -4$$

$$\sqrt[5]{-32} = -2$$

$$-\sqrt[3]{-64} = -(-4) = +4$$
 $-\sqrt[5]{+32} = -(+2) = -2$

$$-\sqrt[5]{+32} = -(+2) = -2$$

Lembrando que quando não aparece índice sobre a raiz é 2.

Atividades:

1) Determine as raízes:

a)
$$\sqrt[2]{4} =$$

b)
$$\sqrt[2]{25} =$$

c)
$$\sqrt[2]{0} =$$

c)
$$\sqrt[2]{0}$$
 = d) $-\sqrt[2]{25}$ = e) $\sqrt[2]{81}$ =

e)
$$\sqrt[2]{81} =$$

f)
$$-\sqrt[2]{81} =$$
 g) $\sqrt[2]{36} =$

g)
$$\sqrt[2]{36} =$$

h) -
$$\sqrt[2]{1}$$
 =

h) -
$$\sqrt[2]{1}$$
 = i) $\sqrt[2]{400}$ =

$$j) - \sqrt[2]{121} =$$

k)
$$\sqrt[2]{169} =$$

1) -
$$\sqrt[2]{900}$$
 =

m)
$$\sqrt[2]{+9} =$$

n)
$$\sqrt[2]{-4} =$$

k)
$$\sqrt[2]{169} =$$
 1) $-\sqrt[2]{900} =$ m) $\sqrt[2]{+9} =$ n) $\sqrt[2]{-4} =$ o) $-\sqrt[2]{+9} =$

p)
$$\sqrt[2]{+64} =$$

q)
$$\sqrt[2]{-64} =$$

r) -
$$\sqrt[2]{64}$$
 =

s)
$$-\sqrt[2]{100} =$$

q)
$$\sqrt[2]{-64} =$$
 r) $-\sqrt[2]{64} =$ s) $-\sqrt[2]{100} =$ t) $\sqrt[2]{-100} =$

u)
$$\sqrt[3]{-27} =$$

$$v) - \sqrt[3]{-27} =$$

w) -
$$\sqrt[3]{+8}$$
 =

x)
$$\sqrt[3]{-1331} =$$

y)
$$\sqrt[3]{-125} =$$